D3 dopamine autoreceptors do not activate G-protein-gated inwardly rectifying potassium channel currents in substantia nigra dopamine neurons.
نویسندگان
چکیده
Substantia nigra (SN) dopamine neurons express D2 and D3 dopamine autoreceptors. A physiological role for the D3 receptor has not been identified, but an activation of G-protein-gated inwardly rectifying potassium (GIRK; also known as Kir3) channels is strongly implicated because D3 receptors activate channels composed of GIRK2 subunits in cell lines. We confirmed that acutely dissociated SN dopamine neurons indeed contain D3 and GIRK2 subunit mRNA using single-cell RT-PCR. We then tested whether D3 receptors activate GIRK currents in SN dopamine neurons by comparing acutely dissociated neurons from D2-/- receptor knock-out and congenic wild-type mice. In nearly all (14 of 15) wild-type SN dopamine neurons, the D2/D3 agonist quinpirole activated GIRK currents that were blocked by cesium. Quinpirole, however, elicited no GIRK currents in any SN dopamine neuron (0 of 13) derived from D2-/- receptor knock-out mice. The absence of quinpirole response was not caused by a lack of GIRK activity, because the GABAB receptor agonist baclofen continued to elicit these currents in the mutant neurons. Thus, it appears that D3 activation of GIRK currents in SN neurons does not occur or is exceedingly rare.
منابع مشابه
Brief Communication D3 Dopamine Autoreceptors Do Not Activate G-Protein- Gated Inwardly Rectifying Potassium Channel Currents in Substantia Nigra Dopamine Neurons
Viviana Davila,1 Zhen Yan,4 Liviu C. Craciun,5 Diomedes Logothetis,5 and David Sulzer1,2,3 Departments of 1Neurology and 2Psychiatry, Columbia University, and 3Department of Neuroscience, New York Psychiatric Institute, New York, New York 10032,4Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, and 5Department of Physiology and Biophysics...
متن کاملMethamphetamine Self-Administration in Mice Decreases GIRK Channel-Mediated Currents in Midbrain Dopamine Neurons
BACKGROUND Methamphetamine is a psychomotor stimulant with abuse liability and a substrate for catecholamine uptake transporters. Acute methamphetamine elevates extracellular dopamine, which in the midbrain can activate D2 autoreceptors to increase a G-protein gated inwardly rectifying potassium (GIRK) conductance that inhibits dopamine neuron firing. These studies examined the neurophysiologic...
متن کاملHeteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain.
The weaver (wv) gene (GIRK2) is a member of the G-protein-gated inwardly rectifying potassium (GIRK) channel family, known effectors in the signal transduction pathway of neurotransmitters such as acetylcholine, dopamine, opioid peptides, and substance P in modulation of neurotransmitter release and neuronal excitability. GIRK2 immunoreactivity is found in but not limited to brain regions known...
متن کاملMetabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes.
Receptor-mediated activation of a G-protein-coupled inwardly rectifying potassium channel (GIRK) is a common mechanism for synaptic modulation in the CNS. However, evidence for metabotropic glutamate receptor (mGluR) activation of GIRK is virtually nonexistent, despite the widespread and overlapping distribution of these proteins. We examined this apparent paradox by coexpressing mGluRs 1a, 2, ...
متن کاملDistinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2003